Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Pain ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38661577

RESUMO

ABSTRACT: The rostral ventromedial medulla (RVM) is a crucial structure in the descending pain modulatory system, playing a key role as a relay for both the facilitation and inhibition of pain. The chronic social defeat stress (CSDS) model has been widely used to study stress-induced behavioral impairments associated with depression in rodents. Several studies suggest that CSDS also causes changes related to chronic pain. In this study, we aimed to investigate the involvement of the RVM in CSDS-induced behavioral impairments, including those associated with chronic pain. We used chemogenetics to activate or inhibit the RVM during stress. The results indicated that the RVM is a vital hub influencing stress outcomes. Rostral ventromedial medulla activation during CSDS ameliorates all the stress outcomes, including social avoidance, allodynia, hyperalgesia, anhedonia, and behavioral despair. In addition, RVM inhibition in animals exposed to a subthreshold social defeat stress protocol induces a susceptible phenotype, facilitating all stress outcomes. Finally, chronic RVM inhibition-without any social stress stimulus-induces chronic pain but not depressive-like behaviors. Our findings provide insights into the comorbidity between chronic pain and depression by indicating the involvement of the RVM in establishing social stress-induced behavioral responses associated with both chronic pain and depression.

2.
Schizophr Bull ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525594

RESUMO

BACKGROUND AND HYPOTHESIS: Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood. STUDY DESIGN: After exposing adolescent animals to physical stress (postnatal day, PND31-40), we explored social and cognitive behaviors (PND47-49), the basal activity of pyramidal glutamate neurons, the number of parvalbumin (PV) interneurons, and the transcriptomic signature of the vHip (PND51). We also evaluated the impact of stress on the redox system, including mitochondrial respiratory function, reactive oxygen species (ROS) production, and glutathione (GSH) levels in the vHip and serum. STUDY RESULTS: Adolescent-stressed animals exhibited loss of sociability, cognitive impairment, and vHip excitatory/inhibitory (E/I) imbalance. Genome-wide transcriptional profiling unveiled the impact of stress on redox system- and synaptic-related genes. Stress impacted mitochondrial respiratory function and changes in ROS levels in the vHip. GSH and glutathione disulfide (GSSG) levels were elevated in the serum of stressed animals, while GSSG was also increased in the vHip and negatively correlated with sociability. Additionally, PV interneuron deficits in the vHip caused by adolescent stress were associated with oxidative stress. CONCLUSIONS: Our results highlight the negative impact of adolescent stress on vHip redox regulation and mitochondrial function, which are partially associated with E/I imbalance and behavioral abnormalities related to SCZ.

3.
Schizophr Bull ; 50(1): 210-223, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584417

RESUMO

BACKGROUND: Consistent with postmortem findings in patients, most animal models for schizophrenia (SCZ) present abnormal levels of parvalbumin (PV), a marker of fast-spiking GABAergic interneurons, in the prefrontal cortex (PFC) and hippocampus (HIP). However, there are discrepancies in the literature. PV reductions lead to a functional loss of PV interneurons, which is proposed to underly SCZ symptoms. Given its complex etiology, different categories of animal models have been developed to study SCZ, which may distinctly impact PV levels in rodent brain areas. STUDY DESIGN: We performed a quantitative meta-analysis on PV-positive cell number/density and expression levels in the PFC and HIP of animal models for SCZ based on pharmacological, neurodevelopmental, and genetic manipulations. RESULTS: Our results confirmed that PV levels are significantly reduced in the PFC and HIP regardless of the animal model. By categorizing into subgroups, we found that all pharmacological models based on NMDA receptor antagonism decreased PV-positive cell number/density or PV expression levels in both brain areas examined. In neurodevelopmental models, abnormal PV levels were confirmed in both brain areas in maternal immune activation models and HIP of the methylazoxymethanol acetate model. In genetic models, negative effects were found in neuregulin 1 and ERBB4 mutant mice in both brain regions and the PFC of dysbindin mutant mice. Regarding sex differences, male rodents exhibited PV reductions in both brain regions only in pharmacological models, while few studies have been conducted in females. CONCLUSION: Overall, our findings support deficits in prefrontal and hippocampal PV interneurons in animal models for SCZ.


Assuntos
Esquizofrenia , Humanos , Camundongos , Masculino , Feminino , Animais , Esquizofrenia/genética , Parvalbuminas/metabolismo , Modelos Animais de Doenças , Interneurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo
4.
Behav Brain Res ; 458: 114764, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37972712

RESUMO

Doxycycline is an antibiotic that has shown neuroprotective, anti-inflammatory, and antidepressant-like effects. Low doses of doxycycline revert the behavioral and neuroinflammatory responses induced by lipopolysaccharide treatment in a mice model of depression. However, the molecular mechanisms involved in the antidepressant action of doxycycline are not yet understood. Doxycycline inhibits the synthesis of nitric oxide (NO), which increases after stress exposure. Inducible NO synthase (iNOS) inhibition also causes antidepressant-like effects in animal models sensitive to antidepressant-like effects such as the forced swimming test (FST). However, no direct study has yet investigated if the antidepressant-like effects of doxycycline could involve changes in NO-mediated neurotransmission. Therefore, this study aimed at investigating: i) the behavioral effects induced by doxycycline alone or in association with ineffective doses of a NO donor (sodium nitroprusside, SNP) or an iNOS inhibitor (1400 W) in mice subjected to the FST; and ii) doxycycline effects in NO metabolite levels in the prefrontal cortex and hippocampus these animals. Male mice (8 weeks) received i.p. injection of saline or doxycycline (10, 30, and 50 mg/kg), alone or combined with SNP (0.1, 0.5, and 1 mg/kg) or 1400 W (1, 3, and 10 µg/kg), and 30 min later were submitted to the FST. Animals were sacrificed immediately after, and NO metabolites nitrate/nitrite (NOx) were measured in the prefrontal cortex and hippocampus. Doxycycline (50 mg/kg) reduced both the immobility time in the FST and NOx levels in the prefrontal cortex of mice compared to the saline group. The antidepressant-like effect of doxycycline in the FST was prevented by SNP (1 mg/kg) pretreatment. Additionally, sub-effective doses of doxycycline (30 mg/kg) associated with 1400 W (1 µg/kg) induced an antidepressant-like effect in the FST. Altogether, our data suggest that the reducing NO levels in the prefrontal cortex through inhibition of iNOS could be related to acute doxycycline treatment resulting in rapid antidepressant-like effects in mice.


Assuntos
Doxiciclina , Óxido Nítrico , Masculino , Camundongos , Animais , Óxido Nítrico/metabolismo , Doxiciclina/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Antidepressivos/uso terapêutico , Natação , Córtex Pré-Frontal/metabolismo
5.
Neurosci Lett ; 818: 137519, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852528

RESUMO

Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.


Assuntos
Ansiolíticos , Camundongos , Masculino , Animais , Ansiolíticos/farmacologia , Sirolimo , Camundongos Endogâmicos C57BL , Endocanabinoides/farmacologia , Serina-Treonina Quinases TOR , Amidoidrolases , Receptor CB1 de Canabinoide
6.
Transl Psychiatry ; 13(1): 351, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978166

RESUMO

Adolescent individuals exhibit great variability in cortical dynamics and behavioral outcomes. The developing adolescent brain is highly sensitive to social experiences and environmental insults, influencing how personality traits emerge. A distinct pattern of mitochondrial gene expression in the prefrontal cortex (PFC) during adolescence underscores the essential role of mitochondria in brain maturation and the development of mental illnesses. Mitochondrial features in certain brain regions account for behavioral differences in adulthood. However, it remains unclear whether distinct adolescent behavioral phenotypes and the behavioral consequences of early adolescent stress exposure in rats are accompanied by changes in PFC mitochondria-related genes and mitochondria respiratory chain capacity. We performed a behavioral characterization during late adolescence (postnatal day, PND 47-50), including naïve animals and a group exposed to stress from PND 31-40 (10 days of footshock and 3 restraint sessions) by z-normalized data from three behavioral domains: anxiety (light-dark box tests), sociability (social interaction test) and cognition (novel-object recognition test). Employing principal component analysis, we identified three clusters: naïve with higher-behavioral z-score (HBZ), naïve with lower-behavioral z-score (LBZ), and stressed animals. Genome-wide transcriptional profiling unveiled differences in the expression of mitochondria-related genes in both naïve LBZ and stressed animals compared to naïve HBZ. Genes encoding subunits of oxidative phosphorylation complexes were significantly down-regulated in both naïve LBZ and stressed animals and positively correlated with behavioral z-score of phenotypes. Our network topology analysis of mitochondria-associated genes found Ndufa10 and Cox6a1 genes as central identifiers for naïve LBZ and stressed animals, respectively. Through high-resolution respirometry analysis, we found that both naïve LBZ and stressed animals exhibited a reduced prefrontal phosphorylation capacity and redox dysregulation. Our findings identify an association between mitochondrial features and distinct adolescent behavioral phenotypes while also underscoring the detrimental functional consequences of adolescent stress on the PFC.


Assuntos
Estresse Psicológico , Transcriptoma , Ratos , Animais , Estresse Psicológico/metabolismo , Ansiedade/genética , Córtex Pré-Frontal/metabolismo , Fenótipo , Mitocôndrias/genética
7.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662217

RESUMO

Autism Spectrum Disorders (ASD) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABA A receptors (α5-GABA A Rs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in a rat model for autism based on in utero VPA exposure. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Male and female adult VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate α5-GABA A Rs positive allosteric modulators may effectively attenuate some core ASD symptoms.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37535820

RESUMO

Background: The concept of an "entourage" effect in the cannabis and cannabinoids' field was first introduced in the late 1990s, during a period when most research on medical cannabinoids focused on the effects of isolated cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabinol. Over the past decade, however, with the increased understanding of the endocannabinoid system, the discovery of other phytocannabinoids and their potential therapeutic uses, the term has gained widespread use in scientific reviews and marketing campaigns. Objective: Critically review the application of the term "entourage effect (EE)" in the literature and its endorsement by certain sectors of the cannabis market. Also, explore the perspectives for further interpretation and elaboration of the term based on current evidence, aiming to contribute to a more nuanced understanding of the concept and its implications for cannabinoid-based medicine. Methods: A comprehensive review of the literature was conducted to evaluate the current state of knowledge regarding the entourage effect. Relevant studies and scientific reviews were analyzed to assess the evidence of clinical efficacy and safety, as well as the regulation of cannabinoid-containing product production. Results: The EE is now recognized as a synergistic phenomenon in which multiple components of cannabis interact to modulate the therapeutic actions of the plant. However, the literature provides limited evidence to support it as a stable and predictable phenomenon. Hence, there is also limited evidence to support clinical efficacy, safety, and appropriate regulation for cannabinoid-containing products based on a "entourage" hypothesis. Conclusion: The EE has significant implications for the medical use of cannabinoid-containing products and their prescription. Nevertheless, a critical evaluation of the term's application is necessary. Further research and evidence are needed to establish the clinical efficacy, safety, and regulatory framework for these products. It's crucial that regulators, the pharmaceutical industry, the media, and health care providers exercise caution and avoid prematurely promoting the entourage effect hypothesis as a scientific proven phenomenon for cannabinoids and other cannabis-derived compound combinations.

9.
Behav Pharmacol ; 34(4): 213-224, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171460

RESUMO

Cannabidiol is a phytocannabinoid that lacks the psychotomimetic properties of Δ9-tetrahydrocannabinol (THC), the main psychoactive Cannabis sativa component. Cannabidiol has several potential therapeutic properties, including anxiolytic, antidepressant, and antipsychotic; however, cannabidiol has low oral bioavailability, which can limit its clinical use. Here, we investigated if two cannabidiol analogs, HU-502 and HU-556, would be more potent than cannabidiol in behavioral tests predictive of anxiolytic, antidepressant, and antipsychotic effects. Different doses (0.01-3 mg/kg; intraperitoneally) of HU-556 and HU-502 were tested in male Swiss mice submitted to the elevated plus maze (EPM), forced swimming test (FST), and amphetamine-induced-prepulse inhibition (PPI) disruption and hyperlocomotion. Cannabidiol is effective in these tests at a dose range of 15-60 mg/kg in mice. We also investigated if higher doses of HU-556 (3 and 10 mg/kg) and HU-502 (10 mg/kg) produced the cannabinoid tetrad (hypolocomotion, catalepsy, hypothermia, and analgesia), which is induced by THC-like compounds. HU-556 (0.1 and 1 mg/kg) increased the percentage of open arm entries (but not time) in the EPM, decreased immobility time in the FST, and attenuated amphetamine-induced PPI disruption. HU-502 (1 and 3 mg/kg) decreased amphetamine-induced hyperlocomotion and PPI impairment. HU-556, at high doses, caused catalepsy and hypolocomotion, while HU-502 did not. These findings suggest that similar to cannabidiol, HU-556 could induce anxiolytic, antidepressant, and antipsychotic-like effects and that HU-502 has antipsychotic properties. These effects were found at a dose range devoid of cannabinoid tetrad effects.


Assuntos
Ansiolíticos , Antipsicóticos , Canabidiol , Canabinoides , Camundongos , Masculino , Animais , Canabidiol/farmacologia , Antipsicóticos/farmacologia , Ansiolíticos/farmacologia , Catalepsia/induzido quimicamente , Antidepressivos/farmacologia , Anfetamina , Dronabinol/farmacologia
11.
Behav Brain Res ; 450: 114502, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37211222

RESUMO

Several pieces of evidence suggest that the monoaminergic theory of depression cannot fully explain all behavioral and neuroplastic changes observed after antidepressant chronic treatment. Other molecular targets, such as the endocannabinoid system, have been associated with the chronic effects of these drugs. In the present study, we hypothesized that the behavioral and neuroplastic effects observed after repeated treatment with the antidepressants (AD) Escitalopram (ESC) or venlafaxine (VFX) in chronically stressed mice depend on CB1 receptor activation. Male mice submitted to the chronic unpredictable stress (CUS) paradigm for 21 days were treated with Esc (10 mg/kg) or VFX (20 mg/kg) once a day in the presence or not of AM251 (0.3 mg/kg), a CB1 receptor antagonist/inverse agonist. At the end of the CUS paradigm, we conducted behavior tests to evaluate depressive- and anxiety-like behaviors. Our results demonstrated that chronic blockade of the CB1 receptor does not attenuate the antidepressant- or the anxiolytic-like effects of ESC nor VFX. ESC increased the expression of CB1 in the hippocampus, but AM251 did not change the pro-proliferative effects of ESC in the dentate gyrus or the increased expression of synaptophysin induced by this AD in the hippocampus. Our results suggest that CB1 receptors are not involved in behavioral and hippocampal neuroplastic effects observed after repeated antidepressant treatment in mice submitted to CUS.


Assuntos
Ansiolíticos , Agonismo Inverso de Drogas , Camundongos , Masculino , Animais , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Hipocampo/metabolismo , Depressão/tratamento farmacológico , Endocanabinoides/metabolismo , Ansiolíticos/farmacologia , Cloridrato de Venlafaxina/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Receptor CB1 de Canabinoide/metabolismo
12.
Behav Brain Res ; 450: 114504, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37209879

RESUMO

The misuse of and addiction to opioids are serious public health problems in some countries, such as the USA. Drug addiction is a chronic and relapsing medical condition that involves motivational and memory-related processes due to the strong associations between drugs and consuming-related stimuli. These stimuli usually trigger continuous and compulsive use and are associated with relapses after periods of withdrawal. Several factors contribute to relapse, including withdrawal-induced mood changes. Therefore, drugs attenuating withdrawal-induced affective alterations could be useful alternative treatments for relapse prevention. Cannabidiol (CBD), a non-psychotomimetic component from the Cannabis sativa plant, has anti-anxiety and anti-stress properties and has been investigated as an alternative for the treatment of several mental disorders, including drug addiction. Here, we evaluated if CBD administered 30 min prior to test for a conditioned place aversion (CPA) would attenuate the aversion induced by morphine withdrawal precipitated by the opioid receptor antagonist naloxone in male C57BL/6 mice. We also investigated if this effect involves the activation of 5-HT1A receptors, a mechanism previously associated with CBD anti-aversive effects. As expected, morphine-treated mice spent less time exploring the compartment paired with the naloxone-induced withdrawal, indicating a CPA induced by naloxone-precipitated morphine withdrawal. This effect was not observed in animals treated with CBD, at 30 and 60 mg/kg, prior to the CPA test, indicating that CBD attenuated the expression of CPA induced by naloxone-precipitated morphine withdrawal. Pretreatment with the 5-HT1A receptor antagonist WAY100635 (0.3 mg/kg) blocked CBD effects. Our findings suggest that CBD may reduce the expression of a previously established conditioned aversion induced by morphine withdrawal by a mechanism involving the activation of 5-HT1A receptors. Thus, CBD may be a therapeutic alternative for preventing relapse to opioid addiction by decreasing withdrawal-induced negative affective changes.


Assuntos
Canabidiol , Dependência de Morfina , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Naloxona/farmacologia , Morfina/efeitos adversos , Canabidiol/farmacologia , Receptor 5-HT1A de Serotonina , Aprendizagem da Esquiva , Síndrome de Abstinência a Substâncias/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas de Entorpecentes/farmacologia , Dependência de Morfina/tratamento farmacológico , Dependência de Morfina/metabolismo
13.
Schizophr Bull ; 49(1): 68-77, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35988039

RESUMO

BACKGROUND AND HYPOTHESIS: Stress during adolescence is a major risk factor for schizophrenia. We have found previously in rats that adolescent stress caused, in adulthood, behavioral changes and enhanced ventral tegmental area (VTA) dopamine system activity, which were associated with dysregulation of the excitatory-inhibitory (E/I) balance in the ventral hippocampus (vHip). Levetiracetam, an anticonvulsant drug, regulates the release of neurotransmitters, including glutamate, via SV2A inhibition. It also modulates parvalbumin interneuron activity via Kv3.1 channels. Therefore, levetiracetam could ameliorate deficits in the E/I balance. We tested whether levetiracetam attenuate the adolescent stress-induced behavioral changes, vHip hyperactivity, and enhanced VTA dopamine system activity in adult rats. STUDY DESIGN: Male Sprague-Dawley rats were subjected to a combination of daily footshock (postnatal day [PD] 31-40), and three 1 h-restraint stress sessions (at PD31, 32, and 40). In adulthood (PD62), animals were tested for anxiety responses (elevated plus-maze and light-dark box), social interaction, and cognitive function (novel object recognition test). The activity of vHip pyramidal neurons and VTA dopamine neurons was also recorded. STUDY RESULTS: Adolescent stress produced anxiety-like responses and impaired sociability and cognitive function. Levetiracetam (10 mg/kg) reversed these changes. Levetiracetam also reversed the increased VTA dopamine neuron population activity and the enhanced firing rate of vHip pyramidal neurons induced by adolescent stress. CONCLUSIONS: These findings suggest that levetiracetam attenuates the adverse outcomes associated with schizophrenia caused by stress during adolescence.


Assuntos
Esquizofrenia , Ratos , Masculino , Animais , Esquizofrenia/etiologia , Ratos Sprague-Dawley , Dopamina , Levetiracetam/farmacologia , Potenciais de Ação/fisiologia , Neurônios Dopaminérgicos/fisiologia , Área Tegmentar Ventral
14.
Curr Neuropharmacol ; 21(2): 284-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35410608

RESUMO

Many psychiatric patients do not respond to conventional therapy. There is a vast effort to investigate possible mechanisms involved in treatment resistance, trying to provide better treatment options, and several data points toward a possible involvement of inflammatory mechanisms. Microglia, glial, and resident immune cells are involved in complex responses in the brain, orchestrating homeostatic functions, such as synaptic pruning and maintaining neuronal activity. In contrast, microglia play a major role in neuroinflammation, neurodegeneration, and cell death. Increasing evidence implicate microglia dysfunction in neuropsychiatric disorders. The mechanisms are still unclear, but one pathway in microglia has received increased attention in the last 8 years, i.e., the NLRP3 inflammasome pathway. Stress response and inflammation, including microglia activation, can be attenuated by Cannabidiol (CBD). CBD has antidepressant, anti-stress, antipsychotic, anti-inflammatory, and other properties. CBD effects are mediated by direct or indirect modulation of many receptors, enzymes, and other targets. This review will highlight some findings for neuroinflammation and microglia involvement in stress-related psychiatric disorders, particularly addressing the NLRP3 inflammasome pathway. Moreover, we will discuss evidence and mechanisms for CBD effects in psychiatric disorders and animal models and address its potential effects on stress response via neuroinflammation and NLRP3 inflammasome modulation.


Assuntos
Canabidiol , Inflamassomos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Doenças Neuroinflamatórias , Microglia/metabolismo
15.
Cannabis Cannabinoid Res ; 8(5): 768-778, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067014

RESUMO

Introduction: The antidepressant properties of ketamine have been extensively demonstrated in experimental and clinical settings. However, the psychotomimetic side effects still limit its wider use as an antidepressant. It was recently observed that endocannabinoids are inolved in ketamine induced reward properties. As an increase in endocannabinoid signaling induces antidepressant effects, this study aimed to investigate the involvement of cannabinoid type 1 receptors (CB1R) in the antidepressant and psychostimulant effects induced by ketamine. Methods: We tested the effects of genetic and pharmacological inhibition of CB1R in the hyperlocomotion and antidepressant-like properties of ketamine. The effects of ketamine (10-20 mg/kg) were assessed in the open-field and the forced swim tests (FSTs) in CB1R knockout (KO) and wild-type (WT) mice (male and female), and mice pre-treated with rimonabant (CB1R antagonist, 3-10 mg/kg). Results: We found that the motor hyperactivity elicited by ketamine was impaired in CB1R male and female KO mice. A similar effect was observed upon pharmacological blockade of CB1R in WT mice. However, genetic CB1R deletion did not modify the antidepressant effect of ketamine in male mice submitted to the FST. Surprisingly, pharmacological blockade of CB1R induced an antidepressant-like effect in both male and female mice, which was not further potentiated by ketamine. Conclusions: Our results support the hypothesis that CB1R mediate the psychostimulant side effects induced by ketamine, but not its antidepressant properties.


Assuntos
Estimulantes do Sistema Nervoso Central , Ketamina , Camundongos , Masculino , Feminino , Animais , Ketamina/farmacologia , Receptor CB1 de Canabinoide/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Rimonabanto/farmacologia
16.
Neurochem Int ; 162: 105442, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402294

RESUMO

S-adenosyl-l-methionine (SAMe), a methyl donor, induces antidepressant effects in preclinical and clinical studies of depression. However, the mechanisms behind these effects have been poorly investigated. Since SAMe is involved in monoamine metabolism, this work aimed at 1) testing the effects induced by systemic treatment with SAMe in mice submitted to the forced swimming test (FST) and tail suspension test (TST); 2) investigating the involvement of serotonergic neurotransmission in the behavioral effects induced by SAMe. To do that, male Swiss mice received systemic injections (1 injection/day, 1 or 7 days) of imipramine (30 mg/kg), L-methionine (400, 800, 1600, and 3200 mg/kg), SAMe (10, 25, 50, 100, and 200 mg/kg), or vehicle (10 ml/kg) and were submitted to the FST or TST, 30 min after the last injection. The effect of SAMe (50 mg/kg) was further investigated in independent groups of male Swiss mice pretreated with p-chlorophenylalanine (PCPA, serotonin synthesis inhibitor, 150 mg/kg daily, 4 days) or with WAY100635 (5-HT1A receptor antagonist, 0.1 mg/kg, 1 injection). One independent group was submitted to the FST and euthanized immediately after for collection of brain samples for neurochemical analyses. Serotonin (5-HT) and noradrenaline (NA) levels were measured in the hippocampus (HPC) and prefrontal cortex (PFC). Furthermore, to investigate if the treatments used could induce any significant exploratory/motor effect which would interfere with the FST results, the animals were also submitted to the open field test (OFT). The administration of imipramine (30 mg/kg), L-methionine (400, 800, 1600, and 3200 mg/kg), and SAMe (10 and 50 mg/kg) reduced the immobility time in the FST, an effect blocked by pretreatment with PCPA and WAY100635. None of the treatments increased the locomotion in the OFT. In conclusion, our results suggest that the antidepressant-like effects induced by SAMe treatment are dependent on serotonin synthesis and 5-HT1A receptor activation.


Assuntos
S-Adenosilmetionina , Serotonina , Masculino , Camundongos , Animais , Serotonina/metabolismo , S-Adenosilmetionina/farmacologia , Imipramina/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Receptor 5-HT1A de Serotonina , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antagonistas da Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina , Natação
17.
Neuropharmacology ; 223: 109316, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334768

RESUMO

Growing evidence from male rodent and human studies suggests that cannabidiol (CBD) modulates the expression of aversive memories and anxiety-related responses. The limited data on whether and how CBD influences these aspects in females could have therapeutic implications given the increased susceptibility of women to anxiety- and stress-related disorders relative to men. Female studies are also essential to examine inherent aspects that potentially contribute to differences in responsiveness to CBD. Here we addressed these questions in adult female rats. Contextually fear-conditioned animals acutely treated with CBD (1.0-10 mg/kg) were tested 45 min later. In subsequent experiments, we investigated the estrous cycle effects and the contribution of dorsal hippocampus (DH) serotonin 1A (5-HT1A) and cannabinoid types 1 (CB1) and 2 (CB2) receptors to CBD-induced effects on memory retrieval/expression. The effects of pre-retrieval systemic or intra-DH CBD administration on subsequent fear extinction were also assessed. Lastly, we evaluated the open arms avoidance and stretched-attend postures in females exposed to the elevated plus-maze after systemic CBD treatment. CBD 3.0 and 10 mg/kg administered before conditioned context exposure reduced females' freezing. This action remained unchanged across the estrous cycle and involved DH 5-HT1A receptors activation. Pre-retrieval CBD impaired memory reconsolidation and lowered fear during early extinction. CBD applied directly to the DH was sufficient to reproduce the effects of systemic CBD treatment. CBD 3.0 and 10 mg/kg reduced anxiety-related responses scored in the elevated plus-maze. Our findings demonstrate that CBD attenuates the behavioral manifestation of learned fear and anxiety in female rats.


Assuntos
Canabidiol , Canabinoides , Humanos , Ratos , Animais , Feminino , Masculino , Canabidiol/farmacologia , Medo/fisiologia , Extinção Psicológica , Serotonina/metabolismo , Canabinoides/farmacologia , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide
18.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202672

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.


Assuntos
Óxido Nítrico , Transtornos de Estresse Pós-Traumáticos , Humanos , Medo , Ácido Glutâmico , Neurotransmissores , Proteínas Adaptadoras de Transdução de Sinal
20.
Pharmaceutics ; 14(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36559092

RESUMO

(1) Background: With the massive demand for the use and commercialization of medicinal cannabidiol (CBD) products, new randomized clinical trials (RCTs) are being published worldwide, with a constant need for safety and efficacy evaluation. (2) Methods: We performed an update on a systematic review published in 2020 that focused on analyzing the serious adverse effects (SAEs) of CBD in RCTs and its possible association with drug interactions. We also updated the report of the most prevalent CBD adverse effects (AEs). We systematically searched EMBASE, MEDLINE/PubMed, and Web of Science without language restriction for RCTs that reported adverse effects after repeated oral CBD administration for at least one week in healthy volunteers or clinical samples published from January 2019 to May 2022. The included studies were assessed for methodological quality by the Quality Assessment of Controlled Intervention Studies tool. The present review is registered on PROSPERO, number CRD42022334399. (3) Results: Twelve studies involving 745 randomized subjects analyzed were included (range 1.1-56.8 y). A total of 454 participants used CBD in the trials. The most common AEs of CBD were mild or moderate and included gastrointestinal symptoms (59.5%), somnolence (16.7%), loss of appetite (16.5%), and hypertransaminasemia (ALT/AST) (12.8%). Serious adverse effects include mainly hypertransaminasemia with serum levels elevations greater than three times the upper limit of the normal (6.4%), seizures (1.3%), and rash (1.1%). All SAEs reported in the studies were observed on CBD as an add-on therapy to anticonvulsant medications, including clobazam and valproate. (4) Conclusion: Recent RCTs involving oral CBD administration for at least a week suggest that CBD has a good safety and tolerability profile, confirming previous data. However, it can potentially interact with other drugs and its use should be monitored, especially at the beginning of treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...